
Gordon Bell Prize Lectures

J. J. Dongarra 1, A. Karp 2, K. Miura 3, and H. D. Simon 4

Report RNR-91-023, August 1991

NASA
National Aeronautics and

Space Administration

Ames Research Center

Moffett Field, California 94035

ARC 275 (Rev Feb 81)

Gordon Bell Prize Lectures

J. J. Dongarra 1 , A. Karp 2, K. Miura 3, and H. D. Simon 4

Report RNR-91-023, August 1991

NAS Systems Division

Applied Research Branch

NASA Ames Research Center, Mail Stop T045-1

Moffett Field, CA 94035

August 12, 1991

Abstract. The Gordon Bell Prize recognizes significant achieve-

ments in the application of supercomputers to scientific and engi-

neering problems. This is a summary of the entries in the 1990

competition, and a detailed discussion of the accomplishements of

the winning entries.

(to appear in the Proceedings of Supercomputing '91, Albuquerque,

November 18- 22, 1991)

1Department of Computer Science, University of Tennessee, Knoxville, TN
37996.

2IBM Scientific Center, 1530 Page Mill Road, Palo Alto, CA 94304.
3Fujitsu America Inc., 3055 Orchard Dr., San Jose, CA 95134.
4The author is an employee of Computer Sciences Corporation. This work

is supported through NASA Contract NAS 2-12961.

Gordon Bell Prize Lectures

J. J. Dongarra

Oak Ridge Natl. Lab

Dept. of Comp. Sci.

Univ. of Tennessee

Knoxville, TN 37996

A. Karp

IBM Scientific Center

1530 Page Mill Road

Palo Alto, CA 94304

K. Miura

Fujitsu America
3055 Orchard Dr.

San Jose, CA 95134

H. D. Simon

Mail Stop T045-1

Comp. Sciences Corp.

NASA Ames Res. Center

Moffett Field, CA 94035

Abstract

The Gordon Bell Prize recognizes significant

achievements in the application of supercomputers to
scientific and engineering problems. In this special

session the winners of the 1990 prize will give pre-

sentations about their winning entries in the competi-
tion.

1 Introduction

The Gordon Bell Prize recognizes significant

achievements in the application of supercomputers to
scientific and engineering problems. In 1990, two

prizes were offered in three categories: performance,

price/performance, and compiler parallelization. The

performance prize recognizes those who solved a real

problem in less elapsed time than anyone" else. The

price/performance prize encourages the development

of cost-effective supercomputing. The compiler prize

encourages the development of smart, parallelizing
compilers.

In the past years the award ceremony for the Gor-

don Bell Prize took place at the Compcon conference,

which is usually held at the end of February in San

Francisco. This is a well attended general comput-

ing conference, but it is not in particular focused on

high performance computing. Since the Gordon Bell

Prize has received increasing public attention, a spe-

cial session has been organized at Supercomputing '91,
in order to give the winners of the prize a better forum

for presenting their work. It is intended to continue

this tradition and organize similar sessions at future

Supercomputing X conferences.

2 The 1990 Competition

We received twelve entries - seven were considered

for the performance prize, two for price/performance,
and two for compiler generated speed-up. One enter-

prisingentrant, knowing how flexible the rules are, en-

tered in a non-existent category, speed-up. Prizes were

awarded in the price/performance and compiler gen-

erated speed-up categories. Honorable mentions were

named in the performance and compiler generated
speed-up categories. Gordon Bell, vice president of en-

gineering at Ardent Computer in Sunnyvale, Calif., is

sponsoring two $1,000 prizes each year for 10 years to

promote practical parallel-processing research. This is

the fourth year of the prize, which IEEE Software ad-

ministers. The winners were announced February 27,

1991 at the Computer Society's Compcon conference
in San Francisco.

A check for $1,000 went to G. A. Geist and G.

M. Stocks of Oak Ridge National Laboratory, B.

Ginatempo.of the Universit£ of Messina, Italy, and

W. A. Shelton of the Naval Research Laboratory for

winning the price/performance award. They com-

puted the electronic structure of a high temperature

superconductor on a 128-node Intel iPSC/860 at a

price/performance of over 0.8 Gfiops/$1 million. In
addition, they solved the same problem on a network

of 11 IBM RS/6000 workstations at 0.7 Gfiops/$1 mil-

lion. (Four of the least expensive of these machines

performed at 1.9 Gfiops/$1 million.) The 2.5 Gfiop

rate for the run on the Intel machine is the first report

of the Gflop barrier being broken by a multicomputer

running a real application.

Gary Sabot, Lisa Tennies, Alex Vasilevsky of

Thinking Machines Corporation and Richard Shapiro

of the United Technologies Corporation received $500

for their work in compiler generated speed-up. They

used a Fortran 77 to Fortran 90 conversion package
to parallelize a grid generation program used to solve

partial differential equations. They achieved a speed-

upof 1,900and ran at over 1.5 Gflops on a Connection

Machine with 2,048 floating point processors.

Two honorable mention prises of $250 each also

were awarded. The winners of last year's performance

award, Mark Bromley, Steven Heller, Cliff Lasser,

Bob Lordi, Tim McNerney, Jacek Mycskowski, It-

shad Mufti, Guy L. Steele, Jr., and Alex Vasilevsky of
Thinking Machines Corporation submitted the same

application code that won last year. They increased

the size of the problem and used an improved compiler

and library. Just these changes enabled them to im-

prove their job's performance by more than 2.5 times

to 14 Gflops on a 64K processor CM-2G.

The other honorable mention goes to Eran Gab-
ber, Amir Averbuch, and Amiram Yehudai of Tel-Aviv

University for a parallelising Pascal compiler. They

successfully parallelised 14 programs, including one of
the programs that won the first Gordon Bell Prize,

achieving speed-ups of up to 25 on 25 processors of a

Sequent Symmetry.

The judges felt that, although they did not win

prizes, two entries were worthy of note. A seismic
migration problem submitted by a group from the

Colorado School of Mines headed by G. Almasi ran

at over 1.5 Gflops/$1 million on a network of 4 IBM

RS/6000s. David Strip of Sandia National Laborato-

ries and Michael S. Karasick of IBM Research figured

out how to do solid modeling on a Connection Ma-

chine over 35 times faster than they could on an IBM
3090 vector processor.

The price/performance category presented a new
problem this year. In the past, all entries in this

category ran on machines costing millions of dollars.

Adding the cost of software, a display, and keyboard to

that of one of these machines will not have a major im-

pact on the price. This year three entrants used collec-

tions of workstations, and each made different assump-

tions about the equipment needed to run the jobs. For
example, the Colorado School of Mines group used a

price for the RS/6000 model 320 nearly twice that used

by the Oak Ridge group. Both price/performance fig-

ures were adjusted, Colorado up substantially and Oak

Ridge down slightly, to reflect the currently published
prices.

3 The Price/Performance Winner

Theoretical materials scientists have traditionally

studied either highly ordered materials such as crys-

tals or highly disordered materials such as glasses. Re-

cently, however, there has been a great deal of experi-

mental work done on what are called "substitutionally

disordered materials." The one that has received the

most press attention is the family of high tempera-

ture superconductors, but metallic alloys and materi-

als with metal-insulator or magnetic pl/ase transitions

also fall into this category.

These materials are messy, and interpreting the ex-

perimental data is difficult. Some five years after the

discovery of high temperature superconductors we still

do not have an understanding of why they lose elec-
trical resistance. Thus, theoreticians have been called

on to help. While semi-empirical studies can be use-

ful, it is widely felt that we will only understand these

materials if we can compute their observed proper-

ties from first principles. In this case, first principles

means relativistic quantum electrodynamics.

It is not yet possible to solve the Schroedinger equa-

tion for a solid; there are just too many degrees of

freedom. Instead, we use methods that enable us to
average over the bulk properties, leaving a manageable
number of states.

One approach is based on an observation arising

from density functional theory. It states that one

of the fundamental properties of a solid, its ground

state energy, depends uniquely on the electron den-

sity. Furthermore, the electron density can be com-

puted by solving for the motion of a single electron
moving through an electric field that is an average of
that of all the nuclei and other electrons. This solution

must include the effect that the moving electron has

on all the other electrons. We say that the solution

must be self-consistent. The complex, many-electron

effects are approximated by treating the background
electrons as a continuous gas and using the density

of that gas at any point as an approximation to the

true electron density, i.e., by making the "local density

approximation."

The local density approximation does not work for

substitutionally disordered materials. Instead, it is

necessary to use a method such as the coherent poten-

tial approximation. The effects the disordered crystal
has on the electronic structure are approximated by

those of some "effective" scatterer. An ordered, peri-

odic array of effective scatterers gives, in some sense,

the best approximation to the disordered structure of

the material. The coherent potential approximation

computes the best effective scatterer that can be ob-
tained using only average properties of the nuclei.

Finding the effective scatterer involves the self-

consistent solution of a set of integrM equations. The

procedure starts with a guess to the electron distribu-

tion. Next, a large number of numerical quadratures

are done. Any deviations from self-consistency are

usedto updatetheelectrondistribution.Theproce-
dureiscontinueduntil it converges.

Theintegralsrepresentingthesolutionaredone
overthefundamentalmodesof thecrystalwhichde-
pendon the locationsof all the nuclei. If the al-
gorithmwereparallelizedat this level,eachproces-
sorwouldberesponsiblefor a subsetof thecrystal.
Since,theseintegralsinvolvedatafromtheentirecrys-
tal,thisschemewouldrequirea lot ofcommunication
among processors. Fortunately, the function being in-
tegrated over the fundamental modes involves an in-

tegral over the energy which can be done separately
at each atomic site.

The integration over energy requires between 200

and 1,000 energy evaluations at each site to determine

the charge distribution for the next iteration. Each en-

ergy evaluation involves the iterative solution of the

coherent potential approximation equations. Since

there is a great deal of computation and little com-

munication, this approach is well-suited for parallel

processing, even on a loosely-connected set of inde-
pendent processors.

The parallelization was implemented using a mas-

ter/slave approach. One processor is responsible for

reading the problem description, the location of the
input files, and managing the overall iteration. Load

balancing is achieved by assigning tasks to processors

in order of decreasing difficulty.

An interesting feature of the code is its portabil-

ity; it has versions for serial, shared memory, and

distributed memory computers. The multicomputers
can be moderately closely coupled systems like hyper-

cubes, or a loosely connected collection of worksta-

tions. The input file determines whether multitasking

or message passing will be used. The total program is

16,000 lines of Fortran and contains 127 subroutines.

Of these, only about 20 are explicitly involved in the
parallelism.

Results were presented for the simplest of the Per-

ovskite superconductors, a family that includes several

of the other high temperature superconductors. This

Barium-Bismuth system is of interest because it has

only five simple cubic sublattices, it has a cubic sym-
metry that reduces the amount of computation, and

it is closely related to the more complicated systems

involving lanthanum and yttrium that have received a
lot of attention.

Most of the time in this calculation goes into con-

structing a 160 x 160, dense, complex matrix (12%)

and then inverting it (78%). These matrices are con-
structed and inverted independently on each node

hundreds of times per iteration. The matrix construc-

tion runs at over 24 Mflops per i860 node, 3 Gflops

aggregate , while the inversion is done at 21 Mflops,

2.6 Gflops aggregate. Each processor of a Cray Y:MP
does these tasks at 300 Mflops which translates into a

2.4 Gflop aggregate rate.

A complete calculation involving almost 4 × 1013

floating point operations took 4.5 hours on a 128

node Intel iPSC/860, a computational rate of 2.5

Gflops. Since the machine being used has a list

price of $3 million, this performance translates into a

price/performance of over 0.8 Gflop/$1 million. This

rate includes all the start-up time and load imbalance.

This same program was ported to a network of

IBM RS/6000s. A single RS/6000 model 320 hav-
ing a list price of $8,500 ran at 16.7 Mflops, which

corresponds to 2.1 Gflop/$1 million. Although this

price performance is impressive, it would have taken
about a month to complete one model. However, foflr
of these bottom of the line machines could finish the

job in about a week at a price performance of over

1.9 Gflop/$1 million. Since neither of these configura-

tions could complete the full problem in a reasonable

amount of time, a run was made on all the RS/6000s

available at Oak Ridge. This set of 7 model 530s and

4 model 320s ran at a sustained rate of 226 Mflops

and a price/performance of over 0.7 Gflop/$1 million.
Note that the speed-up on this application is nearly

linear in the number of processors. Therefore, if there

had been 11 model 320s at Oak Ridge these figures

would have been 170 Mflops and a price/performance

of about 1.8 Gfiop/$1 million.

4 The Compiler Speed-up Winner

As engilieers have improved'their models, they have

found it increasingly necessary to work with compli-

cated shapes. Those who wish to use finite difference

or finite element methods must construct grids that

match the complicated boundaries associated with re-

alistic models. Unfortunately, carelessly generated

grids result in solutions with lots of error. A great

deal of effort has gone into generating grids that do a

good job of following the objects being modeled and
having desirable numerical properties.

Generating a "good" grid is nontrivial. Consider

the simple problem of modeling the flow over a ramp.

A grid consisting of uniformly spaced lines in the ver-

tical and horizontal directions is unlikely to be satis-
factory. The grid intersections will not necessarily fall

on the ramp which will make it difficult to handle the

boundary conditions. Furthermore, the ends of the

ramparelikelytobeplacesneedinghigherresolution
thantheregionsoneithersideoftheramp.

A betterapproachmightbeto produceagridthat
is locallyperpendicularto the surface.Whilethe
boundarycanberepresentedaccuratelythisway,the
grid canbecomehighlynon-uniform.The sudden
changesingridspacingandtheoddshapesofthegrid
ceilscanseriouslydegradethenumericalaccuracyof
thepartialdifferentialequationsolver.

Numericalmethodsareoftenratedonhowquickly
theerrorin thesolutiondecreasesasthegridisrefined.
Forexample,in twodimensionsagoodmethodwith
agoodgridwill reducetheerrorbyafactorof4when
thespacingis halved.However,evena goodmethod
will reducethe erroronlylinearlyasthe spacingis
refinedif thegridis poor.If thegridisverybad,the
convergencecanbesublinear.

Whileit is difficultfor a personto designagood
gridevenforsomethingassimpleasaramp,it isvir-
tually impossibleto builda goodgridfor thekinds
of surfacesengineersareinterestedin, thingslikethe
spaceshuttleor the RockyMountains.Thus,some
sortof automatictoolisneeded.

A gridgenerationprogramis sucha tool. It pro-
ducesagridthatconformsto theshapebeingmodeled
andretainsthegoodnumericalpropertiesof thedis-
cretization.Suchagrid hasa spacingthat changes
smoothlyandhasgridlinesthat crossat nearlyright
angles.Theresultisagridthatconformsto theshape
beingstudiedandwith gridpointslyingonsmooth
curves.

Conceptually,thegridgenerationalgorithm warps

the surface into the unit cube and places a uniform

grid either around this cube if we are modeling the
exterior or inside it if we are interested in the inte-

rior. The differential equation solver is then applied

to this simple domain. To visualize the results we then

transform back into the original coordinates.

This warping is a coordinate transformation deter-

mined by solving a system of partial differential equa-

tions. The solution of these equations gives us the

coordinates of the intersections of the new grid lines.

There are many ways of affecting the transformation

because the properties of a "good" grid, such as skew-

ness and relative size of neighboring grid cells, are
specified so inexactly.

The various grid generation approaches differ pri-

marily in their choice of the equations used to generate

the grid. The method used in the winning entry starts
with an arbitrary grid that follows the boundary. A

system of second order, non-linear differential equa-

tions that represents the coordinates of the new grid

as functions of the coordinates of the old grid is used
to compute the transformation. There is one differ-

ential equation for each coordinate direction (two for

the 2D problem submitted), each involving all combi-
nations of second derivatives. The coefficients of the

second derivatives involve only first derivatives of the

new coordinates with respect to the original ones. It

is these coefficients that make the problem nonlinear.

The solution of these equations is necessarily an it-

erative process. First, the differential equations are

discretized using standard central difference approxi-
mations for the first and second derivatives. The re-

sulting system of nonlinear, algebraic equations can

be solved using a variety of methods, many of which

do not parallelize well.

The model submitted was run on a data parallel

Connection Machine, a CM-2G. This Single Instruc-

tion Multiple Data (SIMD) computer works well on

algorithms that involve lots of independent data ele-
ments. One such algorithm, a relaxation method us-

ing a Jacobi-like iteration, was selected for the com-

putations. This method works by guessing a solution,

evaluating the discretized differential equation to com-

pute the residual, and setting the new value of each

grid coordinate to the old value plus the computed

residual times a relaxation parameter. The relaxation
parameter was used because the approximations os-

cillate around the solution as the iteration proceeds.

While there are methods that converge in fewer it-

erations, they are more complicated, less parallel, or

involve more floating point operations per iteration.

Key to the judges accepting this entry is the fact that

Jacobi-like iterations are commonly used, even on se-
quential, scalar computers.

The entrants took a grid generation program writ-

ten in Fortran 77 containing no compiler directives.

This program was passed through the KAP/F77-F90
preprocessor from Kuck and Associates. The pre-

processor converted many of the nested loops in the

original program into Fortran 90 array constructs.

For this particular program, the sophisticated depen-

dence analysis done by the KAP preprocessor was not

needed; the important loops were very simple. The

resulting Fortran 90 program was compiled with the
CM Fortran compiler which applies conventional vec-

torization optimizations to parallelize the code. The

two stage approach avoided the difficult question of

whether the user or the compiler has determined the

parallelism of a program written using Fortran 90 ar-

ray constructs.

One of the difficulties the judges had with this en-

try was determining the meaning of speed-up on a

SIMD machine. In particular, should we count each

of the 65,536 one-bit processors as a separate machine

or only the 2,048 floating point chips? How can you

make a run on one processor of a SIMD machine? Do

we allow the problem to increase in size as the number

of processors increases or will we consider only fixed-
size speed-up?

The original submission based its speed-up mea-

surement on the time of the original Fortran 77 pro-

gram running on the CM-2 front-end machine, a Sun 4

with a Weitek floating point chip. Although this float-

ing point chip is similar to the one used on the CM, the

judges questioned the validity of the reported speed-

up of 4,900, especially since the version of the CM
Fortran compiler used treated the machine as 2,048

nodes and not 65,536 processors. Clearly, the floating

point performance of the Weitek chip on the Sun is

not simply related to that on the CM-2.

The judges asked the entrants if they could run the

job on one of the nodes. They did this by chang-
ing one environment variable to fool the system into

thinking that the machine consisted of just one node

containing a single, 64-bit FPU and 4 megabytes of

memory. (They were quite surprised when this ap-

proach worked since the compiler testing strategy had

not covered this serial configuration of the CM). Then

they ran the largest problem that could fit in the mem-
ory connected to this node.

The fundamental unit of computation was the num-

ber of grid points processed per second. Since this

quantity is relatively insensitive to the size of the prob-

lem, we felt it was reasonable to compare the 128 × 128

grid on one floating point unit to the 8192 × 4096 grid
computed on the full machine. This method resulted

in a speed-up of 1,900. Equally impressive was the 2.3

Gflops computation rate.

5 Honorable Mentions

The first of the honorable mentions goes to the
group from Thinking Machines Corporation that won

the performance prize for 1989. They improved the

performance of the application they submitted last

year by a factor of 2.5 by throwing away last year's low

level hand code and applying improved compiler tech-

nology to the original Fortran 90 source code. Many
of these compiler improvements were produced by the

same Thinking Machines compiler group that won this

year's prize for compiler generated speed-up!

The 14 Gflops they report is truly remarkable,

as is their price/performance of approximately 1.4

Gflop/$1 million. The CM-2G is the most expensive

machine to achieve over 1 Gflop/$1 million on a real
problem. Because the problem submitted is identical

to the one that won last year's performance prize, the

description that follows concentrates on the changes
made to the software.

The CM-2G is a data parallel, Single Instruction

Multiple Data (SIMD) computer containing 65,536

one-bit processors, 8 Gbytes of memory, and, option-

ally, 2,048 64-bit floating point processors. Data par-
allelism is used to program the CM-2. Basically, the

programmer acts as if each data element, say a grid
point in a finite difference solution, is processed by a

separate processor having its own private memory.

One hardware change is important, the increased

memory. In general, the larger the problem, the higher

the performance. The main reason for this behavior

is that communication between points assigned to a
single floating point unit is faster than between those

assigned to different ones. The four-fold increase in

the memory between the CM-2 used last year and the

CM-2G used this year allowed the entrants to run a

larger problem.

The primary change made in the software is the

compiler's view of the target machine. Each 64-bit

floating point unit and its associated 4 Mbyte of mem-
ory is called a "node" and acts much like a vector pro-

cessor. The CM is viewed as consisting of 2,048 64-bit

vector processor nodes instead of a collection of 65,536

one-bit processors. Loop spreading and strip mining

are used to map problems that have more points than

2048 times the vector length (currently 4)onto the
machine.

This change is reflected in the way CM Fortran

stores floating point numbers. The previous release

of the compiler stored all 32 bits of each floating point

number on a single, bit-serial processor. Unfortu-

nately, this approach does not mesh well with the

Weitek floating point chips.

On a given machine cycle each CM processor can

access one-bit from its local memory. It takes, there-

fore, 32 memory cycles to access a floating point num-

ber. The floating point unit, on the other hand, ex-

pects to get a 32 bit number on every cycle. This prob-

lem was handled in hardware by inserting a transposer

between the CM processors and the floating point
unit. Over a period of 32 cycles, the transposer takes

in 32 floating point numbers, one from each of the 32

one-bit processors. It then feeds these numbers, one

per cycle, into the floating point unit. The process is

reversed when the output is to be stored. While this

approach does allow the pipelining of the Weitek chip

to beused,it impedesthe overall performance of the
machine.

The newest release of the CM Fortran compiler

stores the data "slicewise". In this storage scheme,

each bit of a floating point number is stored on a dif-
ferent one-bit processor. Now, on one cycle 32 bits of

the number can be sent directly to the floating point

unit, bypassing the transposer array. (Two cycles are
used for 64-bit numbers.) Slicewise data storage also

changes the programmer's view because a problem

with as few as 2048 grid points will use all 2048 64-

bit processors, replacing the view where 65,536 points
were needed to use the whole machine.

This new view of the hardware was extended to

the communications. The older library was set up so

that each of the one-bit processors would pass a single
piece of data to a specific neighbor. Since all the data

moved in the same direction on each step, it would

take 4 communications steps to distribute data in a

two dimensional grid. The newly microcoded commu-

nications primitives allow nodes, as opposed to pro-

cessors, to communicate on the two dimensional grid.

There are enough wires from each node to allow them

to pass data in all four directions in one communica-
tions cycle.

Another improvement to the compiler is the way it
handles fundamental grid operations. The finite dif-

ference discretization of a partial differential equation

involves several grid points. The particular choice of

grid points for a given discretization is called a "sten-
cil." In two dimensions the discretization which com-

bines each point with its North, South, East, and West

neighbors is called the 5-point stencil, Other, more
complicated stencils, are also used.

Last year Thinking Machines introduced a stencil

library that used highly tuned microcode to improve
the performance of the communications of some com-

monly used stencil calculations. This year, a compiler

was written which automatically recognizes any kind

of stencil, even an irregular one. Basically, any CM
Fortran statement of the form

A= cl • s(x) + c2 • s(x) + ...

can be compiled as a stencil, as long as h and X are

arrays and S is any of the functions that shift data in

the grid. The stencil compiler uses a number of special

coding tricks to improve performance. For example,

at the start of the computation all the data needed

by the node will be copied into the node's local mem-

ory. Furthermore, optimizations can be used to make

better use of the floating point chip's registers and
pipelines. Every effort has been made to minimize the

movement of data between the floating point unit and

the node's memory.

The other honorable mention is the first cash award

made for work done in Pascal. The compiler this

group from Tel-Aviv University wrote is remarkable
in several respects. The same compiler can be used

for both shared memory and distributed memory ma-

chines. Furthermore, no directives are needed to help

the compiler distribute the data among processors.

The input language, Tel-Aviv University (TAU)-
Pascal, includes only a few, minor extensions to

Pascal. The Portable Parallelizing Pascal Compiler

(pSc) consists of a front-end which takes a sequential,

TAU-Pascal program and produces an explicitly par-
allel C code for Virtual Machine for MultiProeessors

(VMMP). VMMP is a software package that imple-
ments a set of parallel processing functions for a di-

verse set of machines. P3C will produce good parallel

code for any machine that can run VMMP. The data

partitioning and code generation are optimized for the

target machine by consulting a table of parameters

that specifies the relative cost of certain operations,

such as floating point arithmetic or communication.

The P3C compiler produces a parallel program that

runs in Single Program Multiple Data (SPMD) mode.
This means that each of the parallel processes exe-

cutes the same lines of code on different parts of the

data. Some parts of the program are executed by a

subset of the processors by using the task id to control

statement execution. For example, program initializa-
tion and termination are handled by a single processor.

The task id is also used to split up work on an array

among the processors.

PaC does not use the most sophisticated depen-

dence analysis to determine whether a loop can be

parallelized safely. A loop will be parallelized only if
the loop is such that each iteration modifies a differ-

ent array element or if the loop contains certain simple

grid operations. The loop may also be parallelized if

it contains certain reduction operations, such as inner

product, or specific access patterns on columns of ma-

trices. The current version will not parallelize a loop

nested within a previously parallelized loop.

p3C supports only a limited set of data partition-

ings. These are replication (each process gets a com-

plete, read-only copy), replication for data reduction

(certain associative and commutative operations are

allowed on the copies), row distribution (each process

gets a contiguous block of rows), overlapped row dis-

tribution (each process gets a contiguous block of rows

with some duplication between the processes owning

neighboring blocks), interleaved row distribution (the

rowsare dealt out as in a card game), and interleaved
column distribution. As limited as these patterns are,

they are sufficient to parallelize a wide variety of pro-

grams.

The Tel-Aviv group submitted 14 different pro-

grams, each run on three very different parallel sys-

tems - a Sequent Symmetry shared memory machine
with 26 processors, MOS, an experimental shared

memory system with 8 NS32532 processors, and a net-

work of 8 T800 Tranputers.

The application set is quite diverse. It includes
computational kernels, like the solution of dense sys-

tems of linear equations by conjugate gradients and
matrix multiplication, to such applications as a parti-
cle in cell simulation of electron beams and the simu-

lation of 150 bodies attracted by gravitational forces.

The judges worried about how realistic these codes
were, but we were convinced when p3C was used

to parallelize the WAVE program that won the first
year's Bell Prize. In all cases, P3C generated code

ran with between 60% and 99.8% efficiency on all three

parallel systems.

The judges ran into a unique problem with this en-

try. As typically happens, we needed some questions

answered before we felt comfortable awarding a prize.
Unfortunately, just at the time we needed a quick re-

sponse to meet our deadline, Tel-Aviv was under at-

tack from Iraqi missiles! Fortunately, someone from

the Tel-Aviv group managed to get out long enough

to answer our e-mail questions.

6 Other Entries

The Gordon Bell Awards are attracting entries in

many areas, many of which we did not anticipate. An

entry from I. Beichel and F. Sullivan of the National

Institute of Standards and Technology demonstrated
the first robust and efficient code for 3 dimensional

triangulation, an important part of some molecular

dynamics simulations. A. K. Lenstra of Bellcore, H.
W. Lenstra of UC Berkeley, M. S. Manasse of DEC in

Palo Alto, CA, and J. M. Pollard of Reading, England

submitted their widely publicized factorization of the

ninth Fermat number, an integer with 155 digits.

The remaining entries were more along the lines we
were expecting. L. A. Feldman of the US Air Force

and B. M. Dodd of Cray Research submitted a calcula-

tion of the incompressible flow around an F-16 aircraft

flying at Mach 1.8 that only took 30 seconds to com-

plete. P. Highnam, A. Pierprzak, and I. Chakravarty

of Schlumberger and B. Moorhead, C. Liu, B. Biondi,

and D. Race of Thinking Machines Corporation did a

seismic migration problem on a CM-2. W. C. Liu, P.

Rossi, and M. Bromley of Thinking Machines Corpo-
ration and A. D. Kennedy, R. Edwards, and D. Sandee

of Florida State University used a quantum chromo-

dynamics program running on a CM-2 to attack one

of the "grand challenge" problems of computational

science. P. Emeagwali, one of last year's winners, sub-
mitted his version of the NCAR shallow water model

running on a CM-2.

A new rule is being added for the 1991 Gordon

Bell Prize. In addition to prizes for performance,

price/performance, and compiler generated speed-up,
a category is being added to recognize those who use

parallelism in a significant way to make the largest

improvement in solving important problems. Details

will be published at a later date.

7 Program for the Special Session at

Supercomputing 1991

Session Chair: Horst Simon, Computer Sciences Cor-

poration at NASA Ames Research Center.
Presentations:

. A History of the Gordon Bell Prize, by Alan

Karp, IBM Scientific Center, Palo Alto, Califor-

nia. (10 min) (A summary of the history of the

award, entries for the 1990 award, rules and plans

for the 1991 awards.)

. A Portable Parallelizing Pascal Compiler for

Shared and Distributed Memory Multiprocessors,

by Eran Gabber, Amir Averbuch, and Amiram
Yehudai, Tel-Aviv University, Israel; honorable

mention; 12 min + 3 min for questions; presented

by Eran Gabber.

o Seismic Modeling at 14 Gigaflops on the Con-

nection Machine by Mark Bromley, Steven

Heller, Cliff Lasser, Bob Lordi, Tim McNerney,

Jacek Myczkowski, Guy L. Steele Jr., and Alex
Vasilevsky, Thinking Machines Coproration; hon-

orable mention; 12 rain + 3 min for questions;

presented by Guy Steele.

. Compiler Parallelization of an Elliptic Grid Gen-

erator, by Gary Sabot, Lisa Tennies, and Alex
Vasilevsky of Thinking Machines and Richard

Shapiro of United Technologies; compiler speed-

up prize $500; 20 min + 5 min for questions; pre-

sented by Gary Sabot.

5. Parallel Superconductor Code Exceeds 2.5 Gflops

on iPSC/860, by A. Geist and G. Stocks of

Oak Ridge National Laboratory, B. Ginatempo of

the University of Messina, Italy, and W. Shelton

of Naval Research Laboratory, price-performance

prize $1000; 20 min + 5 min for questions; pre-

sented by A1 Geist

8 Abstracts of the Talks

8.1 History of the Gordon Bell Prize

Alan Karp
IBM Scientific Center

1530 Page Mill Road
Palo Alto, CA 94304

Abstract. At the 1985 SIAM conference on par-

allel processing there was a lot of talk about building

1,000 processor, 10,000 processor, and even 1,000,000
processor systems. However, no one had shown that

reasonable speed-ups could be obtained even on much

smaller systems. Tired of hearing lots of talk and see-

ing no demonstrations, in 1986 Alan Karp offered $100

for the first person to demonstrate a speed-up of at

least 200 on a real problem running on a general pur-
pose parallel processor. The offer was to last for 10

years.

Gordon Bell thought the challenge was a good idea,
but he did not think anyone would win it. To keep

things interesting for the duration of the challenge,

he offered his own prize - $1,000 for the best speed-

up of a real application running on a real machine.

An additional category was added for special purpose
machines.

Bell had three goals in mind for his prize.

• Reward practical use of parallel processors.

• Encourage improvements in hardware and soft-
ware.

• Demonstrate the usefulness of parallel processors

for real problems.

These goals remain the same 5 years later.

As is now well known, the winners of the first Bell

Prize took home all the marbles, Bell's money as well

as Karp's. The group from Sandia National Labo-
ratory demonstrated a speed-up of over 400 on three

large applications running on a message passing hyper-

cube with 1,024 processors. In addition, they pointed

out that real users run larger problems on faster ma-

chines. They calculated speed-ups of close to 1,000 if

the problem size scaled with the number of processors.

The rules were modified following the first year

and have remained the same since then. Each year

the judges have $2,000 to divide among two winners

and any honorable mentions. The recipients are se-

lected from entries in three categories - performance,

price/performance, and compiler generated speed-up.

Performance is normally measured in millions of

floating point operations per second (Mflops). En-
trants must convince the judges that they have run

their application faster than anyone else has done. Al-

though the judges end up comparing the raw perfor-

mance of a wide variety of applications, each year a

clear winner has emerged.

The price/performance prize encourages the devel-

opment of cost effective supercomputing. The rules
are set up to prevent unrealistic machines from win-

ning the prize. For example, a parallel job running at

1 Kflop per second on two used Z-80 processors with a

price of $1 is not eligible. (Interestingly enough, such

a machine would not have won a prize this year.)

The compiler generated speed-up prize is intended
to spur the development of compilers that can auto-

matically parallelize sequential programs. This prob-

lem is a difficult one as evidenced by the fact that this

category received its first prize only this year.

No toy problems or cooked up examples are allowed;

we are looking for real problems run on real machines.

Although the rules are quite flexible, it is up to the

entrants to convince the judges of the quality of the
work submitted.

Four sets of prizes have been given. The origi-

nal rules rewarded large speed-up. Subsequently, the

rules were modified to emphasize performance and

price/performance. The progress in those 4 years has
been remarkable. Examination of the Table shows

that, while speed-up has stayed near 1,000, both per-

formance and price/performance have improved dra-

matically.

Year Performance

Gflops
1987 0.45

1988 1.0

1989 6.0

1990 14.0

Price/perf.
Gflops/$1 million

0.03

0.05

0.5

2.0

Speed-up

600

800

1,100

1,800

Manufacturers have announced some interesting
machines, and software developers are promising eas-

ier to use tools and more sophisticated compilers.

Let's hope that the rate of improvement continues.

8.2 A Portable Parallelizing Pascal Com-
piler for Shared and Distributed

Memory Multiprocessors

Eran Gabber, Amir Averbuch, and Amiram Yehudai

Computer Science Dept.
School of Mathematical Sciences

Tel-Aviv University
Tel-Aviv 69978 ISRAEL

E-marl: eran@MATH.TAU.AC.IL

achieved lower speedups. For example, matrix inver-
sion achieved a speedup of 17.3 and 6.4, respectively.

8.3 Seismic Modeling at 14 Gigaflops on
the Connection Machine

Mark Bromley, Steven Heller, Cliff Lasser, Bob Lordi,

Tim McNerney, Jacek Myczkowski, Guy L. Steele Jr.,

and Alex Vasilevsky

Thinking Machines Coproration

Abstract. The Portable Parallelizing Pascal Com-

piler (p3c) is a research compiler, which translates se-

rial programs written in a Pascal based language into

a portable and efficient parallel code. PsC generates
code for both shared memory and distributed memory

multiprocessors.

p3C performs automatic data and process parti-

tioning, which are guided by an accurate execution
time estimation. The execution time estimation is

performed by a static analysis of the program with
reference to an external target parameters table, p3C

recognizes common data access patterns, such as for

grids, arrays and data reduction, and generates effi-

cient partitioning for them. p3C is fully automatic

and does not require any user directives or declara-

tions to assist the partitioning.

p3C consists of two parts: a target independent

parallelizer and the virtual machine VMMP, which is

a portable software environment running on diverse
multiprocessors. P3C can be ported easily to other

multiprocessors by porting VMMP and generating the
target parameters table.

P3C has been implemented on two shared memory

multiprocessors (a Sequent Symmetry and an exper-

imental machine) and on a distributed memory mul-

tiprocessor (a network of Transputers). Porting PsC

to other multiprocessors should take 2-3 man months
by our experience.

p3C has been used to parallelize 14 application

programs from diverse areas, including physical simu-

lations, linear algebra kernels, cellular automata and

PDE solution. One of these programs is the Wave pro-
gram, which received the 1987 Gordon Bell Prize:

The parallel code produced by P3C achieved

speedup up to 24 on 25 processors of a Sequent Sym-

metry (shared memory), and up to almost 8 on a net-

work of 8 Transputers (distributed memory). This

speedup was achieved for cellular automata simula-
tion and Monte-Carlo integration. The Wave pro-

gram achieved a speedup of 22 and 7.8, respectively.

Other programs with less than perfect parallelism

Abstract. Seismic modeling represents a diffi-

cult numerical challenge and consumes a significant
amount of CPU time on the largest available super-

computers. With the advent of massively-parallel su-

percomputers, there is a possibility of drastically re-

ducing the execution time for some of these codes.

Many of the algorithms used in seismic modeling

use explicit numerical methods on regular structured

grids. Because of the regularity of the interconnec-
tions and the locality of the calculations, those types

of problems usually map well onto massively parallel

computers. In this paper the acoustic wave equation

with sponge boundary conditions will be used as an

example to show how to map and optimize an explicit
finite difference algorithm onto a massively parallel

machine. This algorithm is part of a seismic mod-

eling code developed jointly by Mobil Research and

Thinking Machines to run on a CM-2 Connection Ma-

chine. This program achieved a sustained performance

of 14.1 billion numerical operations per second (14.1

Gigaflops) including I/O on a 65536 processor CM-2

supercomputer.

8.4 Compiler Parallelization of an Elliptic
Grid Generator

Gary Sabot, Lisa Tennies, and Alex Vasilevsky

Thinking Machines Corporation
and Richard Shapiro

United Technologies

Abstract. The paper presents a case study involv-

ing the application of an automatically parallelizing

compiler to a numerically intensive Fortran program,

and includes a detailed analysis of the result. The

paper is based on work performed as part of an en-

try that won the 1990 Gordon Bell Prize for Compiler
Parallelization.

The compiler involved is the CM Fortran 1.0 com-

piler, which targets the 2048 FPUs available in a full

size CM-2 parallel computer. The application code

implements grid generation for numerical simulation.

Thepaperpresentsa parallel speedup of 4770 over

a serial run on a Sun workstation (which only has 1

FPU), and includes a cycle counting analysis of how
such a speedup is possible with 2048 FPUs.

8.5 Parallel Superconductor Code Ex-

ceeds 2.5 Gflops on iPSC/860

G. A. Geist

Mathematical Sciences Section

Oak Ridge National Laboratory

B. Ginatempo
Istituto di Fisica Teorica

Unit£ GNSM-CISM, Universit£ of Messina, Italy

W. A. Shelton

Naval Research Laboratory

Washington, DC.

G. M. Stocks
Metals & Ceramics Division

Oak Ridge National Laboratory

Abstract. Researchers at Oak Ridge National

Laboratory have developed a Fortran application code

for calculating from first principles the electronic prop-

erties and energetics of disordered materials. The
same source code has been compiled and run on work-

stations, Crays, and the Intel iPSC/860. This elec-
tronic structures code is capable of running over 2

Gflops on both an 8 processor Cray YMP and a 128

processor Intel iPSC/860.

Using this new KKR-CPA code, density-of-state
computations of the high temperature perovskite su-

perconductor (Ba.sK.4)BiO3 executed at a rate of

2527 Mflops on the Intel iPSC/860. This corresponds

to a price/performance rate of 842 Mflops per $1 mil-

lion based on the list price of this computer.
The KKR-CPA code was modified to use the soft-

ware system PVM (Parallel Virtual Machine). PVM

allows a network of heterogeneous computers to be uti-

lized as a single computational resource. Many con-

figurations of machines have been used in running the

KKR-CPA code including a network of IBM RS/6000
workstations, a network of Cray supercomputers, and

a Cray - Intel combination.

The highest price/performance ratio was 2 Gflops
per $1 million and was achieved using a network of

IBM RS/6000 model 320's. The highest raw perfor-

mance observed so far is over 9 Gflops using a network

of Crays.

This talk will describe the parallelization of the ap-

plication code and the performance achieved on vari-

ous machines.

Acknowledgements

The work by Eran Gabber, Amir Averbuch, and

Amiram Yehudai was supported in part by the Ba-
sic Research Foundation administered by the Israel

Academy of Sciences and in part by a research grant

from National Semiconductor, Israel.

The research by G.A. Geist et al. was supported

by the Applied Mathematical Sciences Research Pro-

gram, Office of Energy Research, and the Division of

Materials Sciences, U.S. Department of Energy, under
contract DE-AC05-84OR21400 with Martin Marietta

Energy Systems, Inc.

Horst D. Simon acknowledges support for his work

through contract NAS 2-12961 with the National
Aeronautics and Space Administration.

Portions of this report have been published previ-

ously in IEEE Software, May 1991, page 92.

